Question 13. A particle moves in a closed orbit around the origin, due to a force which is directed towards the origin. The de-BrOglie wavelength of the particle varies cyclically between two values λ_1 , λ_2 with λ_1 > λ_2 Which of the following statements are true?

- (a) The particle could be moving in a circular orbit with origin as centre
- (b) The particle could be moving in an elliptic orbit with origin as its focus
- (c) When the de-Broglie wavetength is λ_1 the particle is nearer the origin than when its value is λ_2
- (d) When the de-Broglie wavelength is λ_2 the particle is nearer the origin than when its value is λ_1

_ . .

Solution:

(b, d) According to the question, here given that the de-Broglie wavelength of the particle can be varying cyclically between two values λ_1 and λ_2 , it is possible if particle is moving in an elliptical orbit with origin as its one focus.

As shown in the figure given alongside,

Let v_1 and v_2 be the speed of particle at A and B respectively and origin is at focus O. If λ_1 and λ_2 are the de-Broglie wavelengths associated with particle while moving at A and B respectively, then

$$\lambda_1 = \frac{h}{mv_1}$$
and
$$\lambda_2 = \frac{h}{mv_2}$$

$$\vdots \qquad \frac{\lambda_1}{\lambda_2} = \frac{v_2}{v_1}$$
Since
$$\lambda_1 > \lambda_2$$

$$\vdots \qquad v_2 > v_1$$

By law of conservation of angular momentum, the particle moves faster when it is closer to focus.

From figure, we note that origin O is closed to P than A.